ENVIRONMENTAL CHEMISTS

Date of Report: May 10, 1996 Date Received: May 2, 1996

Project: Metro Self Monitor, PO #M72056 Date Samples Extracted: May 6, 1996 Date Extracts Analyzed: May 9, 1996

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR CHROMIUM, COPPER, NICKEL, AND ZINC USING METHOD 6010

Samples Processed Using Method 3005A Results Reported as mg/L (ppm)

Sample ID	Chromium	Copper	<u>Nickel</u>	<u>Zinc</u>
M72056	0.96	1.4	0.87	0.08
Method Blank	< 0.05	< 0.05	< 0.05	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: May 10, 1996 Date Received: May 2, 1996

Project: Metro Self Monitor, PO #M72056

QUALITY ASSURANCE RESULTS FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 68534 (Duplicate)

Analyte:	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference	Acceptance Criteria
Chromium	mg/L (ppm)	0.96	0.95	1	0-20
Copper	mg/L (ppm)		1.2	15	0-20
Nickel	mg/L (ppm)	0.87	0.87	0	0-20
Zinc	mg/L (ppm)	0.08	0.09	12a	0-20

Laboratory Code: 68534 (Matrix Spike)

	Reporting	Spike	Sample	0/	Recovery	Acceptanc	Relative e Percent
Analyte:	Units	Level			China Communication of the Com		Difference
Chromium	mg/L (ppm)	5	0.96	95	99	80-120	4
Copper	mg/L (ppm)	5	1.4	93	93	80-120	0
Nickel	mg/L (ppm)	10	0.87	97	99	80-120	2
Zinc	mg/L (ppm)	5	0.08	98	100	80-120	2

Laboratory Code: Spike Blank

	Reporting	Spike	% R	ecovery	Acceptance	Relative Percent
Analyte:	Units	Level	MS	MSD	Criteria	Difference
Chromium	mg/L (ppm)	5	103	103	80-120	0
Copper	mg/L (ppm)	5	101	106	80-120	5
Nickel	mg/L (ppm)	10	103	103	80-120	0
Zinc	mg/L (ppm)	5	103	103	80-120	0

a - The analyte was detected at a level less than five times the detection limit. The RPD results may not provide reliable information on the variability of the analysis.

FRIEDMAN & BRUYA, INC. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282

KNJ A+ 52.96 1:50

SAMPLE CHAIN OF CUSTODY

Send Report To: 1 Company + ASKA Address 628 4 City, State, Zip South	gentered ST.	Works		Conta	CI GERALI	s Thomps)50- ³
Phone # (206) 78		1873 7			5-2-96		
SITE NO.		PROJ	ECT NAME		PU	RCHASE ORDE	R#
7238		metro S	self m	on. Hon	m 72	2056	
SAMPLER'S (signatura)						OJECT LOCATION	ON
X R.E					3200	6th /	Are S.
REMARKS					7007	DISPOSAL INFO	
	ž s	A Company of the second	, '	,	Reti	pose after 30 day urn Samples for Instructions	
Sample #	Date/Time Sampled	Type of Sample	# of Jars	Lab Sample	#	Analyses Requested	
m 72056	12:30 5/2	420		6853	4 CR	CUN,	7-3
						-	
· · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
······································							
							
··							
· · · · · · · · · · · · · · · · · · ·							
				ŭ			
				- 11			
			 				
			-				
						·····	
- A:							
SICHATURE -		PRINT NAME		COMPAN		Date	Time
don't g	- (TERA	LED THOMES	دءو	HC	w	72/56	1: Fran
Referred by	' 1	11		Cini	7	Elalas	
Relinquished by:	urg CA	Thy bww.	NOT	TY254		2/0/76	1:00 pm
Received by:							

FORMS/COC

6

09/19/94

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282 3012 16th Avenue West Seattle, WA 98119-2029 FAX: (206) 283-5044

May 10, 1996

INVOICE # 96ACU0510-1 DUPLICATE COPY

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro Self Monitor: Results of testing requested by Gerry Thompson, Project Manager for material submitted on May 2, 1996.

1 water sample analyzed for
Chromium, Copper, Nickel, and Zinc
using Method 6010 @ \$65 per sample

Amount Due \$65.00

ENVIRONMENTAL CHEMISTS

Andrew John Friedman James E. Bruya, Ph.D. (206) 285-8282

3012 16th Avenue West Seattle, WA 98119-2029 FAX: (206) 283-5044

May 10, 1996

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Enclosed are the results from the testing of material submitted on May 2, 1996 from your Metro Self Monitor, PO #M72056 project.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Kurt Johnson

Chemist

keh

Enclosures ACU0510R.DOC